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In this paper, new functions named &&modi"ed comparison functions'' are introduced and
used for vibration analysis of a simply supported rectangular cracked plate. It is assumed
that the crack having an arbitrary length, depth and location is parallel to one side of the
plate. Elastic behavior of the plate at crack location is considered as a line spring with
a varying sti!ness along the crack. Because there is no exact solution for this problem, one
has to use some approximate methods. Although among the functions which are used for
vibration analysis of a cracked plate, the comparison functions are more accurate, obtaining
these functions is very di$cult. In spite of this di$culty, a method for obtaining the
comparison functions of the above cracked plate satisfying all the geometric and natural
boundary conditions as well as the inner boundary conditions at crack location is
introduced. The main purpose of this paper is to improve the accuracy of these comparison
functions which only satisfy all the boundary conditions and the inner boundary conditions
at the crack location, but their accuracy is questionable at a distance away from the
boundaries. In order to increase the accuracy of the comparison functions, it is assumed that
the crack a!ects the mode shape functions in its neighborhood, and its maximum in#uence is
at the crack location, and the in#uence will vanish at a su$cient distance from the crack. The
comparison functions obtained in this way are called the &&modi"ed comparison functions''
and they are more accurate than the comparison functions. Using the Rayliegh}Ritz
method, the &&modi"ed comparison functions'' are used to obtain the natural frequencies of
the cracked plate mentioned above. The results are presented by appropriate curves showing
the variations of the natural frequencies of the cracked plate in terms of the crack depth,
length and location.

( 2000 Academic Press
1. INTRODUCTION

Energy methods are usually used for investigating the vibrational behavior of plates having
di!erent types of boundary conditions as well as damaged plates. The Ritz method is one of
the usual methods by which the natural frequencies of thin plates may be obtained
approximately.

The accuracy of the method will be mainly in#uenced by the functions which are used for
the vibrational mode shape functions [1]. Admissible functions are mainly used for
estimating the natural frequencies of damaged circular and rectangular plates. Leissa et al.
[2] investigated the vibration of circular plates with V-notches, using the Ritz method and
considering admissible functions. In another investigation, Lee [3] used the Rayleigh}Ritz
method and investigated admissible functions for the vibration of annular circular plates
having a cut out between the internal and external radii. Finite element methods are also
used for vibration analysis of damaged rectangular plates. For instance, Guan-Liang and
22-460X/00/370245#14 $35.00/0 ( 2000 Academic Press
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others [4] investigated the vibration analysis of a rectangular plates having a
through-thickness crack being parallel to one side of the plate, using the "nite element
method. In another investigation, Prabhakara and Datta [5] used the "nite element method
to examine the statical stability and vibrations of damaged rectangular plates. Considering
the rotary inertia and shear deformation e!ects, Lee and Lim [6] used a numerical
approach based on the Rayleigh}Ritz method to predict the natural frequencies of
rectangular plates with a centrally located crack.

Having in mind that small damages have a minor e!ect on the natural frequencies of the
plate, it is impossible to accurately predict such variations using admissible functions. On
the other hand, the process of obtaining the eigenfunctions in such problems is quite
complicated and in some cases it is even impossible. So one needs to use functions which are
more accurate than admissible functions, i.e., so-called comparison functions.

In this investigation among the class of comparison functions, for the "rst time new
functions which are called &&modi"ed comparison functions'' and satisfy natural and geometric
boundary conditions are introduced. The &&modi"ed comparison functions'' are more accurate
than comparison functions. In this paper, the &&modi"ed comparison functions'' are suggested
for the vibrational analysis of a damaged rectangular plate. The crack having an arbitrary
length, depth, and location is parallel to one side of the plate. It is assumed that the
rectangular plate is simply supported at all edges. Using the Rayliegh}Ritz method the
&&modi"ed comparison functions'' are used to obtain the natural frequencies of cracked plates.

2. MODELLING ELASTIC BEHAVIOR OF A CRACK HAVING A FINITE LENGTH

To model a crack with a "nite length in a cracked rectangular plate, a rectangular plate
may be considered as shown in Figure 1; the crack is 2C in length and runs parallel with one
side of the plate. The co-ordinates of the crack center are represented by x

0
and y

0
. Using

non-dimensional parameters as

2c"
2C

a
crack relative length,

f
0
"

x
0
a

, g
0
"

y
0
b

crack center-co-ordinates, (1)

m"
h
0

H
crack relative depth at its center,

a, b and H represent dimensions of the plate in x, y and z directions, respectively, and
h
0

represents the crack depth at its center.
A hypothetical boundary along the crack direction which divides the plate into two

regions is considered. Rice and Levy [7] obtained the ratio of the stress-intensity factor of
a "nite-length crack at a plate, k, to the stress-intensity factor of an all-over crack at another
plate, k

=
, (same as stress-intensity factor in an edge-cracked strip in plane strain state and

under bending moments), for which both plates are subjected to the same bending moments.
By increasing the ratio of the crack length to the plate thickness, 2C/H, the ratio of k/k

=
for

all values of relative depth of the crack, i.e., h
0
/H, approaches unity. The smaller the relative

depth of the crack, the more the value of k/k
=

approaches unity in quite small values of
2C/H. On the other hand, since k is proportional to the stress, so decrease in k of a crack
with small length, is followed by decreasing stress at the region of the crack with small



Figure 1. Rectangular plate with a part-through "nite-length crack.
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length and a given depth in comparison with the lengthy crack with the same depth. Rice
and Levy [7] derived an approximate formula for nominal bending stress at the location of
the crack with a "nite length. When the plate is only subjected to the bending moments, the
formula becomes

p0
b
"

pb
=

1#[3(3#l)(1!l)a0
bb
/(2C/H)]

(2)

where p0
b

is the nominal bending stress at the crack location and on the surface of the plate,
pb

=
is the nominal bending stress at the location of the crack with an in"nite length and on

the surface of the plate, a0
bb

is the non-dimensional bending compliance coe$cient at the
crack center, and l is the Poisson ratio.

As a result, the discontinuity of the slope at both sides of the crack with a "nite length is
less than the one for the lengthy crack with the same depth and bending load. Now it is
necessary to "nd a function to model the shape of the crack in regard to some parameters
characterizing the crack (relative depth, length and co-ordinates of the center). If the shape
of the crack is considered as a semi-ellipse, in Cartesian co-ordinate system, then the
function representing the shape of the crack will be

h(x)"Gh0C1!A
x!x

0
C B

2

D
1@2

,

0,

for x
0
!C(x(x

0
#C

for G0(x(x
0
!C

x
0
#C(x(a

(3)

For vibration analysis of the plate having a crack with a "nite length, relation (3) can be
expanded as a sum of sine and cosine functions in the domain 0)x)a by Fourier series.
However, the application of this method may be ine$cient due to time consuming and
intensive computational e!orts. Therefore, by using the following equation [7]

a
bb
"

1

H P
h

0

g2
b
dh, (4)

where g
b

is the dimensionless function of the relative crack depth (m"h/H) in range of
0(m(0)7 and is de"ned as [8]

g
b
"m1@2 (1)99!2)47m#12)97m2!23)117m3#24)80m4), (5)
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a function representing dimensionless bending compliance coe$cient is directly suggested
as a function of dimensionless co-ordinate, f, which is free of the above-mentioned
di$culties, as follows [9]

a
bb

(f)"a0
bb

e![(f!f
0
)e]2/2c2 (6)

where a0
bb

is the dimensionless bending compliance coe$cient at crack center, e is the base of
natural logarithm, and f is the dimensionless coordinate (0)f)1).

The value of the above function is very small for the range of 0)f)f
0
!c

and f
0
#c)f)1, and by keeping a distance from both ends of the crack, this value

really vanishes. By growing the length of the crack, the value of a
bb

(f) according to
equation (6) approaches the "xed value of a0

bb
as it is for an all-over crack. The variation of

a
bb

(f) for crack with f
0
"0)5, a relative length of 2c"0)015, and a0

bb
"2)5 as well as the

curve for the variation of the relative depth of the crack based on equation (6) are shown in
Figure 2.

As already mentioned, for the crack of a "nite length the value of the nominal bending
stress is less than this value for the center of an all-over crack. The value of the stress for the
range of 0)f)f

0
!c and f

0
#c)f)1, where the plate is free of a crack, has a normal

value and reaches its minimum value at the crack zone when approaching the center of the
crack from both ends.

Considering the variation of a
bb

(f) on the hypothetical boundary in accordance with
equation (6), and a0

bb
as a dimensionless bending compliance coe$cient at the crack center,

one may suggest the variation of the nominal bending stress on the hypothetical boundary
as the following new function [9]

p
b
(f)"pb

=
!(pb

=
!p0

b
) f (f), (7)

where f (f) is the &&crack shape function'' and is de"ned as [9]

f (f)"e![(f!f
0
)e]2/2c2 . (8)

On the other hand, the slope discontinuity at both sides of the crack location due to bending
moments is proportional to bending compliance of the crack and nominal bending stress,
Figure 2. Variation of a
bb

(f) for a crack with f
0
"0)5, 2c"0)015, and a0

bb
"2)5 based on equation (6).
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and is given by [7]

h"
12(1!l2)

E
p
b
a
bb

(9)

and pb
=

is given as [10]

pb
=
"

!EH

2(1!l2)A
L2w

Ly2
#l

L2w

Lx2B . (10)

By substituting equations (6) and (7), respectively, for a
bb

and p
b
into equation (9), and by

expressing equation (10) in the dimensionless form, one may obtain an expression for the
slope discontinuity at both sides of the hypothetical boundary (g"g

0
) as [9]

h (f) Kg"g
0

"

!6H

b A
L2w

Lg2
#l/2

L2w

Lf2B a0
bb

E (f) f (f) Kg"g
0

, (11)

where

E(f)"
2C/H#3(l#3)(1!l)a0

bb
[1!f (f)]

2C/H#3(l#3)(1!l)a0
bb

(12)

Equation (11) gives the slope discontinuity at both sides of the hypothetical boundary along
the crack in terms of the characteristics of the crack, the plate elastic behavior and the plate
curvature at crack location

3. VIBRATION ANALYSIS OF A PLATE HAVING A CRACK OF FINITE LENGTH

3.1. HOW TO OBTAIN VIBRATIONAL MODE SHAPE FUNCTIONS

The governing equation for the free vibration of a rectangular plate is given by [11, 12]

!D
E
$4w"M

L2w

Lt2
, (13)

where w"w (x, y, t), $4 is the biharmonic operator, M is the mass per unit area of the plate
and D

E
is the plate #exural rigidity.

Using the separation of variables technique, one may obtain

d2¹ (t)

dt2
#u2¹(t)"0, $4=!

u2M

D
E

="0, (14a, b)

where w (x, y, t)"=(x, y)¹(t), and ¹(t) is a harmonic function. Equation (14b) may be
written in terms of dimensionless co-ordinates f and g as follows:

L4=(f, g)

Lg4
#2/2

L4=(f, g)

Lg2Lf2
#/4

L4=(f, g)

Lf4
!/4j4=(f, g)"0 (15)



250 S. E. KHADEM AND M. REZAEE
where /"b/a is the plate aspect ratio, and j2"ua2JM/D
E
. Note that all dependent and

independent variables of equation (15) are dimensionless.
For a plate with simple supports along the edges f"0 and 1, and an arbitrary edge

condition at g"0 and 1, the solution of equation (15) may be expressed in the form [13]

=(f, g)"
=
+

m/1

>
m
(g) sin(mnf). (16)

By substituting equation (16) into equation (15), one obtains

d4>
m
(g)

dg4
!2/2(mn)2

d2>
m
(g)

dg2
#/4[(mn)4!j4]>

m
(g)"0. (17)

By applying equation (17) to two regions of the cracked plate shown in Figure 1, one may
require eight boundary conditions. The boundary conditions are applied to regions (1) and
(2), respectively, at g"0 and 1, and to a hypothetical boundary separating the two regions.
Because of the form of the plate supports at all four edges (simple support), the boundary
conditions at f"0 and 1 for two regions are satis"ed by equation (16). The boundary
conditions at g"0 and 1, for regions (1) and (2), respectively, are as follows:

>
1m

(g) Kg"0

"

d2>
1m

(g)

dg2 Kg"0

"0, >
2m

(g) Kg"1

"

d2>
2m

(g)

dg2 Kg"1

"0. (18a, b)

On the other hand, one may obtain solution of equation (17) for j2'(mn)2 and j2((mn)2
as

>
m
(g)"A

m
coshb

m
g#B

m
sinhb

m
g#C

m
sin c

m
g#D

m
cos c

m
g, j2'(mn)2, (19a)

>
m
(g)"A

m
coshb

m
g#B

m
sinhb

m
g#C

m
sinh c

m
g#D

m
cosh c

m
g, j2((mn)2, (19b)

where b
m
"/Jj2#(mn)2 and c

m
"/Jj2!(mn)2 or /J(mn)2!j2 whichever is real,

and A
m

through D
m

are constants.
By applying the boundary conditions (18a) and (18b) to equations (19a) and (19b), one

may obtain two solutions for two mentioned ranges of j2, where, for the range of j2'(mn)2
it will be as

=
1
(f, g)"(B

1m
sinh b

m
g#C

1m
sin c

m
g) sinmnf, 0)g)g

0
, (20a)

=
2
(f, g)"[B

2m
sinhb

m
(g!1)#C

1m
sin c

m
(g!1)] sinmnf, g

0
)g)1. (20b)

The boundary conditions along the crack at g"g
0

are

=
1
"=

2
, M

1g"M
2g, <

1g"<2g (21a}c)

and

C
Lw

1
Lg

!h (f)!
Lw

2
Lg Dg"g

0

"0. (21d)
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The "rst three relations show the equality of de#ections, bending moments and shear forces
on the two sides of the hypothetical boundary, respectively. The fourth equation shows the
relation between the slope of two sides of the crack and the slope discontinuity at crack
location.

By application of the aforementioned boundary conditions (21) to equations (20a) and
(20b), one gets a set of homogeneous equations. Setting the determinant of the coe$cient
matrix equal to zero in order to obtain non-trivial solutions for B

1m
, C

1m
, B

2m
and C

2m
, one

may reach a determinant as [9]

K
sinhb

m
g
0

j2
`

sinhb
m
g
0

b
m
j2
~

coshb
m
g
0

Mb
m
coshb

m
c
0
#(6H/b)a0

bb
][j2

`
E (f) f (f) sin c

m
g
0
]N

sin c
m
g
0

j2
~

sin c
m
g
0

!c
m
j2
`

cos c
m
g
0

Mc
m
cos c

m
c
0
!(6H/b)a0

bb
][j2

~
E(f) f (f) sin c

m
g
0
]N

!sinhb
m
(g

0
!1)

!j2
`

sinhb
m
(g

0
!1)

!b
m
j2
~

coshb
m
(g

0
!1)

!b
m
cosh b

m
(g

0
!1)

!sin c
m
(g

0
!1)

!j2
~

sin c
m
(g

0
!1)

c
m
j2
`

cos c
m
(g

0
!1)

!c
m
cos c

m
(g

0
!1) K

"0, (22)

where for the sake of brevity, the following de"nitions are used

j2
`
,/2[j2#(mn)2(1!l)], j2

~
,/2[j2!(mn)2(1!l)].

Equation (22) has been written in terms of variable f and it should be equal to zero for all f's
for the range of 0)f)1. Since the problem is an eigenvalue problem, the vibrational
mode shape functions for two regions (1) and (2) are obtained as [9]

=
1m

"B
1mAsinh b

m
g#

e
3
#e

4
E (f) f (f)

e
5
f (f)

sin c
m
gB sinmnf">

1m
(g) sinmnf, (23a)

=
2m

"B
1mAe1 sinhb

m
(g!1)#e

2

e
3
#e

4
E(f) f (f)

e
5
f (f)

sin c
m
(g!1)B sin mnf">

2m
(g) sin mnf,

(23b)

where parameters e
1
}e

5
are de"ned as

e
1
"sinhb

m
g
0
/sinhb

m
(g

0
!1), e

2
"sin c

m
g
0
/sin c

m
(g

0
!1), (24a, b)

e
3
"2b

m
/2j2[coshb

m
g
0
!sinhb

m
g
0
coshb

m
(g

0
!1)/sinhb

m
(g

0
!1)], (24c)

e
4
"

6H

b
a0
bb

(j2
`
)2 sinhb

m
g
0
, e

5
"

6H

b
a0
bb

j2
~

j2
`

sin c
m
g
0
. (24d, e)

As already mentioned, the presence of the crack causes reduction of local #exibility at crack
location. Therefore, for a crack with "nite length, the value of the nominal bending moment
reduces and the bending moment function will be continuous at the crack location. In other
words, despite the presence of the part-through crack, the bending moment is equal at two
sides of the crack. By keeping a distance from the crack along a line normal to the crack, the
e!ect of the crack on bending moment function decreases. This e!ect will vanish quite far
from the crack. The length and depth of the crack are important parameters in determining
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the above-mentioned distance. The more the crack length, the more is the distance in which
the e!ect of the crack on bending moments vanishes. For an all-over crack, the distance
covers the length of the plate throughout. The e!ect of the crack depth appears mainly as
variations of bending moment function at crack zone. By assuming that the e!ect of crack
having a length of 2C on the bending moment function vanishes at distance D"y

0
$b

a
(2C),

where y
0

is the co-ordinate of the crack center along a line normal to the crack, and a, and
b are the plate dimensions, the distance in dimensionless co-ordinates, becomes

D

b
"g

0
$

2b

ab
CNd"g

0
$2C, c"

C

a
(25)

considering that the value of B
1m

is arbitrary in equations (23a) and (23b), one may
determine B

1m
by assuming >

1m
(g

0
!2c)"1 or >

1m
(g

0
#2c)"1 for g

0
(2c as

B
1m

"

1

Msinhb
m
(g

0
!2c)#[(e

3
#e

4
E (f) f (f))/(e

5
E (f) f (f))] sin c

m
(g

0
!2c)N

(26)

upon substituting equations (26) into equations (23a) and (23b) and arranging terms, one
gets

=
1m

"F
1
(f) sinhb

m
g#F

2
(f) sin c

m
g,

=
2m

"e
1
F
1
(f) sinh b

m
(g!1)#e

2
F

2
(f) sin c

m
(g!1),

(27a, b)

where F
1
(f) and F

2
(f) are de"ned as

F
1
(f),

e
5
E(f) f (f) sinmnf

(e
8
E (f) f (f)#e

9
)
, F

2
(f),

[e
3
#e

4
E (f) f (f)] sinmnf

(e
8
E (f) f (f)#e

9
)

(28a, b)

and

e
6
,sinhb

m
(g

0
!2c), e

7
,sin c

m
(g

0
!2c), (29a, b)

e
8
,e

5
e
6
#e

4
e
7
, e

9
,e

3
e
7

(29c, d)

by applying the aforementioned method for the range of j2((mn)2, one may obtain similar
equations.

3.2. DISCUSSION ON VIBRATIONAL MODE SHAPE FUNCTIONS: &&MODIFIED COMPARISON

FUNCTIONS''

The functions which are obtained for determining the vibrational mode shape of
a cracked plate with a "nite length crack, according to equations (27a) and (27b), result in an
exact solution within the range of 0)f)f

0
!c and f

0
#c)f)1, but their accuracy is

questionable within the range of f
0
!c)f)f

0
#c. In fact, the aforementioned functions

will act as comparison functions in the above range. Here, the aim is to obtain more
accurate results and push the above comparison functions toward the eigenfunctions of the
system in the range of f

0
!c)f)f

0
#c.
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By applying the crack shape function, de"ned as a continuous function in the range of
0)f)1, to equation (22) and by considering the physical aspect of the problem, it is
observed that the values obtained for j are constant in the uncracked zones (0)f)f

0
!c

and f
0
#c)f)1). However, the values of j vary at the cracked zone (f

0
!c)

f)f
0
#c). At the cracked zone, j begins from its maximum value (j

max
"j

I
) at two ends of

the crack and reaches its minimum value at the center of crack. The value of j at the range of
0)f)1 can be obtained by solving equation (22) (for the case of j2((mn)2 a similar
method is used). However, computer calculations for obtaining j in accordance with the
aforementioned method are time-consuming. As an alternative technique, a function which,
in addition to adequate accuracy, decreases the calculation time considerably may be
suggested for j. In order to increase the accuracy of the vibrational mode shape functions of
the cracked plate, the j function may be considered as one which will be in#uenced by the
crack in the crack zone and remain constant in the other zones, quite far from the crack. For
this purpose, j may be expressed as a two-variable function in terms of f and g. If the
function for j is expressed, at a direction normal to the crack, as an exponential function in
such a way that its maximum di!erence from j

I
happens at crack center (g"g

0
), and its

di!erence from j
I
reduces to zero through distance g"g

0
$2c, the proposed aims will be

satis"ed [9]:

j (f, g)"j(f)#(j
I
!j(f))[1!e!(g!g

0
)2/c2], (30)

where j(f) is de"ned as

j (f)"j
I
!(j

I
!j

d
)e![(f!f

0
)2/c2]CF, (31)

where CF is a correction factor.
In Figure 3, for the range of 0)f)1 and at g"g

0
, the curves for the variations of

j obtained by exactly solving equation (22) are compared with the values of j obtained
directly through the suggested equation (30). These curves are plotted for a typical case in
which 2c"0)2, g

0
"0)4, m

0
"0)5, j

I
"3)776 and j

d
"3)671.

This "gure shows, how the desired accuracy is reachable by choosing CF"(n/2)2.
Using equation (30) results in more accurate vibrational mode shape functions.

Obviously, the in#uence of quite small cracks on the natural frequencies is minor. In order
to evaluate such small variations in natural frequencies, it is necessary to consider
Figure 3. Variation of j against x/a obtained from the exact solution of equation (22) and values of j obtained
through equation (30) for the case of f

0
"0)5, g

0
"0)4, j

I
"3)776, j

d
"3)671, and 2c"0)2.
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vibrational mode shape functions as accurate as possible. Thus, by considering j as in
equation (30), the accuracy of the vibrational mode shape functions (27a) and (27b) is
de"nitely more than that of comparison functions. Therefore, one may call such new
functions &&modi"ed comparison functions'' [9].

3.3. USING &&MODIFIED COMPARISON FUNCTIONS'' TO CALCULATE NATURAL FREQUENCIES

OF A RECTANGULAR PLATE HAVING A CRACK WITH FINITE LENGTH

The maximum kinetic and potential energy of a vibrating rectangular plate in
dimensionless co-ordinate can be obtained as [9]

KE"

1

2
M/ u2a4 PP

A

=2df dg"(KE)*u2, (32)

PE"

D
E

2/ PP
A
C/2A

L2=

Lf2 B
2
#

1

/2A
L2=

Lg2 B
2
#2l

L2=

Lf2
L2=

Lg2
#2(1!l)A

L2=

LfLgB
2

Ddf dg. (33)

By considering equations (32) and (33), one may get the angular natural frequency, u, as

u"JPE/(KE)*. (34)

When the stored elastic potential energy at the location of crack is added to the total
potential energy of the plate, equation (33) will be applicable to a cracked plate. By
assuming that the crack is open in all conditions, the stored potential energy at the crack
location may be calculated as [9]

dP
c
"Mghf dfDg"g

0
, (35)

where Mg is the bending moment causing the crack to be opened, and hf is the slope
discontinuity at two sides of the crack at f position. By substituting into equation (35), one
may get

P
c Kg"g

0

"

6HD
E
a0
bb

b2/2 P
1

0
A
L2=

Lg2
#l/2

L2=

Lf2 B
2
E (f) f (f) df Kg"g

0

. (36)

The stored potential energy of the cracked plate can be obtained through sum of the stored
potential energy of the plate at regions (1) and (2) and the stored potential energy at the
crack location

P"(PE)
1m

#(PE)
2m

#P
c
. (37)

The reference kinetic energy may be calculated through the sum of the reference kinetic
energy of the plate at regions (1) and (2):

K*"(KE)*
1m

#(KE)*
2m

. (38)
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By considering equations (37) and (38), the natural frequency of the cracked plate is
obtained as

f"
1

2nS
P

K*
. (39)

3.4. RESULTS

Referring to Figure 1, a cracked plate with the following characteristics is considered and
di!erent cases of crack locations and dimensions are studied:

E"200 GPa, o"7860, l"0)3, H"4 mm, a"18 cm, b"27 cm.

The in#uence of a crack with a relative length of 0)2 and a relative depth of 0)6 on the "rst
and second natural frequencies is shown in Figures 4a and 4b. From the Figures, it is
evident that the presence of the crack with a "nite length at g

0
"0 and g

0
"1 has no

in#uence on the natural frequencies; it is because of simple supports on those edges.
In Figure 4b, in addition to g

0
"0 and 1, the presence of the crack at g

0
"0)5 does not

a!ect the second natural frequency due to the existence of the nodal line at g
0
"0)5.

Also, to study the in#uence of f
0

as another parameter one realizes that as shown in
Figures 4a and b for di!erent values of g

0
"constant, by increasing f

0
from 0)1 to 0)5, the

in#uence of the crack on natural frequencies also increased.
On the other hand, for any values of f

0
, maximum in#uence on natural frequencies occurs

when g
0

is located at the mid-point of two successive nodal lines.
Figure 5 shows the in#uence of the location and dimensions of a crack on the value of the

stored relative potential energy at crack location, P
c
/P, in the "rst vibrational mode.

It is obvious from this "gure that for any values for g
0
, by increasing f

0
from 0)1 to 0)5, the

ratio of P
c
/P is increased, and its maximum value occurs at the center of the plate

(f
0
"g

0
"0)5).

4. CONCLUSION

The presence of a crack on the plate increases local #exibility of the plate at the crack
location, and as the crack dimensions get larger and it is far from nodal lines, the more
Figure 4. The in#uence of a crack on (a) the "rst and (b) the second natural frequencies for the case of 2c"0)2,
h/H"0)6 and di!erent values of f

0
from 0)1 to 0)5.



Figure 5. Variation of P
c
/P against g

0
for the case of 2c"0)2, h/H"0)6 and di!erent values of f

0
from 0)1 to 0)5

in the "rst vibrational mode.
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in#uence it will have on the natural frequencies of the plate [14]. By knowing that quite
small cracks produce a low in#uence on natural frequencies, it is required that the selected
functions be as close to the eigenfunctions as possible. Therefore, using admissible functions
is not recommended due to introducing very large approximations into the solution. In
addition, the in#uence of the crack on natural frequencies is very little against such
approximations, and in some cases, the solutions obtained for the natural frequencies of
cracked plate is bigger than that of the natural frequencies of the intact plate, which is
contrary to the physical fact and is nonsense.

Using comparison functions introduces unacceptable errors into the calculations; for
instance, the presence of a crack with a quite small length and quite big depth on a plate
makes the solutions divergent. However, for cracks with large length and small depth, quite
appropriate results may be obtained.

In conclusion, it is not possible to use the admissible and comparison functions for all
cases of cracked plates; on the other hand, it is very di$cult to obtain the eigenfunctions.
Therefore, using new functions, the so-called &&modi"ed comparison functions'', were
suggested and used for the "rst time in this paper.

The main advantages of the &&modi"ed comparions functions'' are
* being free of the aforementioned disadvantages of the admissible and comparison

functions;
* having an appropriate accuracy which is more accurate than the comparison functions;
* can be obtained more easily than the eigenfunctions.

By considering the &&modi"ed comparison functions'', the results obtained for variations of
natural frequencies and stored potential energy at the crack location show that, the more the
crack is able to store the potential energy, P

c
, the more the decrease in the natural frequency

occurs. Therefore, the location of the crack is one of the most important parameters which
in#uences the natural frequencies of the cracked plate in a special manner.
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APPENDIX: NOMENCLATURE

a, b plate dimensions
2C crack length
2c relative crack length
D

E
plate #exural rigidity

E Young's modulus

G
E (f), e

1
,2, e

9
F
1
(f), F

2
(f)

functions which appear in deriving

the vibrational mode shapes
F(f) crack shape function
f natural frequency of the plate
g
b

a dimensionless function
H plate thickness
h(x) crack depth in terms of x
h
0

crack depth at center of crack
k stress-intensity factor for the crack having "nite length
k
=

stress-intensity factor for the crack having in"nite length
KE kinetic energy
K* reference kinetic energy
M mass per unit area of the plate
M

1g,2 bending moment
PE potential energy
P
c

potential energy at crack location
S simple support
¹(t) time-dependent function
<
1g,2 shear force

w,=,=
1m

,2 transverse de#ection
x, y, z spatial co-ordinates of the plate
x
0
, y

0
co-ordinates of the crack center

>
m
(g) ,2, vibrational mode shape function in the g direction

a
bb

dimensionless bending compliance coe$cient
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a0
bb

dimensionless bending compliance coe$cient at the crack center
b
m
, c

m
non-dimensional frequency parameters

f, g dimensionless co-ordinates
f
0
, g

0
dimensionless co-ordinates of the crack center

h slope discontinuity at crack location
j2, j2

~
, j2

`
frequency parameters

l Poisson's ratio
m relative depth of all-over crack
p0
b

nominal bending stress at a point on the surface of the plate and crack location
p0
=

nominal bending stress at a point on the surface of the plate and location of
all-over crack

/ plate aspect ratio
u angular frequency
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